
Flexible, Reliable Software
Additional Material
Another Example of

Test-Driven Development:
The Hotel Safe

Henrik Bærbak Christensen

Status: Released / Revision 2103

September 4, 2018



Chapter

1
The Challenge
A hotel provides a small safe in each room of the hotel. We are asked to implement
the production code that handles entering the code, locking and unlocking the safe,
as well as writing relevant information in a small six character display.

1.1 The Physical Safe

The safe has a display consisting of six 7-segment elements1, see Figure 1.1. It has
a numerical panel having buttons for the digits “0” to “9”. Additionally it has three
special buttons with a padlock symbol (marked “Lock”), a key symbol (marked “Open”),
and a broken arrow symbol (marked “Set New PIN”). From the factory the safe is
preprogrammed with the pin code “123456” as code to open the safe.

Figure 1.1: The display and key panel of the safe.

Users can program their own pin codes to open the safe, however, it must always be
a 6 digit pin code.

17-segment elements can display all digits as well as subset of letters, those that do not contain any
oblique lines.

2



Stories z 3

1.2 Stories

The safe is provided with a very short guide for operating the safe intended for the
hotel room visitor, as seen in Figure 1.2.

Figure 1.2: The safe’s instructions.

The company defines a set of stories to drive the implementation effort. The follow-
ing stories assume the safe has the factory default pin code “123456” as the 6-digit
proper pin code.

Story 1: Unlock Safe The user approaches the safe whose door is locked. The display
is empty, which means it contains 6 spaces/blanks. The user hits the key-symbol
button. The user enters his previously stored pin code by pressing the buttons one
at the time: “1”, “2”, “3”, “4”, “5”, “6”. The display reacts by writing each digit as it
is pressed. After the final “6” button press, the display clears and displays “OPEN ”.
The safe door unlocks and can be opened.

Story 2: Lock Safe The safe door is unlocked. The display reads “OPEN ”. The
user closes the door and presses the lock button. The door locks. The display reads
“CLOSED”.

Story 3: Forgetting key Button The safe is locked. The user forgets to hit the key
button first and hits “1”. The display reads “ERROR ”. All following button hits
result in the display reading “ERROR ”, unless the key botton is pressed.

Story 4: Wrong Code The safe is locked. The user hits key followed by 1 2 4 3 5 6.
The display is cleared. The safe remains locked.

Story 5: Set New Code The safe is open/unlocked. The user hits the pin button,
enters a new six digit pin code, “777333”, and finally hits the pin again. The safe’s
display reads “CODE ”. It remains unlocked. After locking, the safe can only be
unlocked (see story 1) by entering the new pin code “777333”.

Note: The scenarios above are not quite consistent: After locking the safe, the display
reads “CLOSED” (and entering new pin “CODE ”) but then how does it get to the



4 z The Challenge

state where the display is cleared? In the real safe there will be a timer clearing the
display after a short period but I will ignore this feature in the following discussion.

Note also that story 2 is actually not complete as it only discusses the behavior of the
lock button if the safe is unlocked, not what happens if it is pressed while the safe is
already locked. This, however, will be discovered in iteration 8.

1.3 Given Interfaces

The Safe interface is given and is simplified for the purpose of our process, a real
safe would interact with various hardware components which would require the in-
troduction of test stubs which is a topic not yet introduced.

Listing: examples/safe/iteration-0/Safe.java

/∗ ∗ The s p e c i f i c a t i o n o f a s i m p l e s a f e .
∗ /
public i n t e r f a c e Safe {

/∗ ∗ Enter a b u t t o n p r e s s on t h e s a f e . ∗ /
public void enter ( Button button ) ;

/∗ ∗ Read t h e o u t pu t o f t h e d i s p l a y on t h e s a f e .
∗ POSTCONDITON: I t i s a lways a non−n u l l s t r i n g o f
∗ e x a c t l y 6 c h a r a c t e r s t h a t can be p r i n t e d on
∗ a 7−segment d i s p l a y .
∗ @return : t h e o u t put on t h e d i s p l a y
∗ /

public S t r i n g readDisplay ( ) ;

/∗ ∗ Get t h e s t a t e o f t h e s a f e : i s i t l o c k e d or not .
∗ @return t r u e i f f t h e s a f e i s l o c k e d .
∗ /

public boolean isLocked ( ) ;
}

The Button class is just a simple enumeration.

Listing: examples/safe/iteration-0/Button.java

/∗ ∗ The b u t t o n s on t h e s a f e .
∗ /
public enum Button {

D0 , D1 , D2 , D3 , D4 , D5 ,
D6 , D7 , D8 , D9 , LOCK, KEY, PIN

}



Chapter

2
TDD of Safe
In this chapter I will develop an implementation of the Safe interface in a class
SafeImpl. However, I will only develop the code for the first four stories (no entering
of a new pin code) in this small release or sprint.

The first shot at a test list looks like this.
] Initial: Display reads 6 spaces. Safe is locked.
] Enter (key,1,2,3) gives “123 ” as output. Safe is locked.
] Enter (key,1,2,3,4,5,6) gives “OPEN ”, safe unlocked.
] Enter (1,2) gives “ERROR ”. Safe locked.
] Enter (key,1,2,4,3,5,6) gives “CLOSED”. Safe locked.
] Unlocked safe: Enter (lock) gives empty display. Safe locked.

2.1 Iteration 1: Setup
As most of the items on the test list assume the safe is initially in the initial/locked
state it makes sense to make it our One Step Test—Initial: Display reads 6 spaces. Safe is
locked.

Step 1: Quickly add a test:

Listing: examples/safe/iteration-1/TestSafe.java

import org . j u n i t . ∗ ;
import s t a t i c org . j u n i t . Assert . ∗ ;

/∗ ∗ T e s t c a s e s f o r S a f e .
∗ /
public c l a s s Tes tSa fe {

@Test
public void shouldInit ial lyBeLockedAndCleanDisplay ( ) {

Safe s a f e = new SafeImpl ( ) ;
a s s e r t E q u a l s ( " Display must be empty " ,

" " , s a f e . readDisplay ( ) ) ;
a sser tTrue ( " Safe must be locked " , s a f e . isLocked ( ) ) ;

}
}

5



6 z TDD of Safe

leads to Step 2: Run all tests and see the new one fail:

JUnit version 4.4
.E
Time: 0,015
There was 1 failure:
1) shouldInitiallyBeLockedAndCleanDisplay(TestSafe)
java.lang.AssertionError:

Display must be empty expected:< > but was:<null>

Step 3: Make a little change is of course heavy use of Fake It.

Listing: examples/safe/iteration-1/SafeImpl.java

/∗ ∗ I m p l e m e n t a t i o n o f t h e S a f e .
∗ /
public c l a s s SafeImpl implements Safe {

public void enter ( Button button ) {
}

public boolean isLocked ( ) {
return true ;

}

public S t r i n g readDisplay ( ) {
return " " ;

}

}

Which gives me Step 4: Run all tests and see them all succeed. No need for Step 5: Refactor
to remove duplication.

2.2 Iteration 2: Half Code

Step 1: Quickly add a test—Enter (key,1,2,3) gives “123 ” as output. Safe is locked.

Listing: examples/safe/iteration-2/TestSafe.java

import org . j u n i t . ∗ ;
import s t a t i c org . j u n i t . Assert . ∗ ;

/∗ ∗ T e s t c a s e s f o r S a f e .
∗ /
public c l a s s Tes tSa fe {

private Safe s a f e ;

@Before
public void setup ( ) {

s a f e = new SafeImpl ( ) ;
}

@Test
public void shouldInit ial lyBeLockedAndCleanDisplay ( ) {

a s s e r t E q u a l s ( " Display must be empty " ,



Iteration 2: Half Code z 7

" " , s a f e . readDisplay ( ) ) ;
a sser tTrue ( " Safe must be locked " , s a f e . isLocked ( ) ) ;

}

@Test
public void shouldDisplayCodeAsEntered ( ) {

s a f e . enter ( Button .KEY ) ;
s a f e . enter ( Button . D1 ) ;
s a f e . enter ( Button . D2 ) ;
s a f e . enter ( Button . D3 ) ;
a s s e r t E q u a l s ( " Display must be 123 " ,

" 123 " , s a f e . readDisplay ( ) ) ;
a sser tTrue ( " Safe must be locked " , s a f e . isLocked ( ) ) ;

}
}

(Note! I do not just enter “123” but the real and proper sequence as outlined in the
story. At the moment the production code could be implemented without pressing
the key button, but once I enter the production code to ensure it is pressed this test
case would fail and I would have to recode it. See sidebar 5.3 on page 63 in FRS.)

Leads to Step 2: Run all tests and see the new one fail. But how to proceed? Perhaps this
test case is a bit too complex? Do I have to introduce code to translate from Button.D1
to “1” etc. at this point in my process? No, I can actually Step 3: Make a little change
Fake It and still Triangulate something sensible into the implementation, namely the
introduction of an instance variable to keep the display contents.

Listing: examples/safe/iteration-2/SafeImpl.java

/∗ ∗ I m p l e m e n t a t i o n o f t h e S a f e .
∗ /
public c l a s s SafeImpl implements Safe {

private S t r i n g displayContents ;

public SafeImpl ( ) {
displayContents = " " ;

}

public void enter ( Button button ) {
displayContents = " 123 " ;

}

public boolean isLocked ( ) {
return true ;

}

public S t r i n g readDisplay ( ) {
return displayContents ;

}

}

Remember, keep focus and take (very) small steps. Step 4: Run all tests and see them all
succeed.

Step 5: Refactor to remove duplication—I can refactor the test case class to use the before
method.



8 z TDD of Safe

Listing: examples/safe/iteration-2/TestSafe.java

import org . j u n i t . ∗ ;
import s t a t i c org . j u n i t . Assert . ∗ ;

/∗ ∗ T e s t c a s e s f o r S a f e .
∗ /
public c l a s s Tes tSa fe {

private Safe s a f e ;

@Before
public void setup ( ) {

s a f e = new SafeImpl ( ) ;
}

@Test
public void shouldInit ial lyBeLockedAndCleanDisplay ( ) {

a s s e r t E q u a l s ( " Display must be empty " ,
" " , s a f e . readDisplay ( ) ) ;

a sser tTrue ( " Safe must be locked " , s a f e . isLocked ( ) ) ;
}

@Test
public void shouldDisplayCodeAsEntered ( ) {

s a f e . enter ( Button .KEY ) ;
s a f e . enter ( Button . D1 ) ;
s a f e . enter ( Button . D2 ) ;
s a f e . enter ( Button . D3 ) ;
a s s e r t E q u a l s ( " Display must be 123 " ,

" 123 " , s a f e . readDisplay ( ) ) ;
a sser tTrue ( " Safe must be locked " , s a f e . isLocked ( ) ) ;

}
}

] Initial: Display reads 6 spaces. Safe is locked.
] Enter (key,1,2,3) gives “123 ” as output. Safe is locked.
] Enter (key,1,2,3,4,5,6) gives “OPEN ”, safe unlocked.
] Enter (1,2) gives “ERROR ”. Safe locked.
] Enter (key,1,2,4,3,5,6) gives “CLOSED”. Safe locked.
] Unlocked safe: Enter (lock) gives empty display. Safe locked.

2.3 Iteration 3: Unlock Safe

I look at the next item on my list Enter (key,1,2,3,4,5,6) gives “OPEN ”, safe unlocked.
Seems like a nice One Step Test and easy to code as a test case.

Listing: examples/safe/iteration-3/TestSafe.java

import org . j u n i t . ∗ ;
import s t a t i c org . j u n i t . Assert . ∗ ;

/∗ ∗ T e s t c a s e s f o r S a f e .
∗ /
public c l a s s Tes tSa fe {

private Safe s a f e ;

@Before



Iteration 3: Unlock Safe z 9

public void setup ( ) {
s a f e = new SafeImpl ( ) ;

}

@Test
public void shouldInit ial lyBeLockedAndCleanDisplay ( ) {

a s s e r t E q u a l s ( " Display must be empty " ,
" " , s a f e . readDisplay ( ) ) ;

a sser tTrue ( " Safe must be locked " , s a f e . isLocked ( ) ) ;
}

@Test
public void shouldDisplay123CodeAsEntered ( ) {

s a f e . enter ( Button .KEY ) ;
s a f e . enter ( Button . D1 ) ;
s a f e . enter ( Button . D2 ) ;
s a f e . enter ( Button . D3 ) ;
a s s e r t E q u a l s ( " Display must be 123 " ,

" 123 " , s a f e . readDisplay ( ) ) ;
a sser tTrue ( " Safe must be locked " , s a f e . isLocked ( ) ) ;

}

@Test
public void shouldUnlockSafeOnCorrectCode ( ) {

s a f e . enter ( Button .KEY ) ;
s a f e . enter ( Button . D1 ) ;
s a f e . enter ( Button . D2 ) ;
s a f e . enter ( Button . D3 ) ;
s a f e . enter ( Button . D4 ) ;
s a f e . enter ( Button . D5 ) ;
s a f e . enter ( Button . D6 ) ;
a s s e r t E q u a l s ( " Display must be 123456 " ,

" 123456 " , s a f e . readDisplay ( ) ) ;
a sser tTrue ( " Safe must be unlocked " , ! s a f e . isLocked ( ) ) ;

}
}

Of course I get Step 2: Run all tests and see the new one fail. Now the question is if I
can get Step 3: Make a little change? It seems I need some design and quite some code
to Triangulate the fake-it code away? The test case both require unlocking (which is
faked) as well as comparing entered code with stored correct code (which is not even
faked, it is non-existing)—and even accumulating digits to be shown in the display.
The bottom line is that the test case is easy but the production code will not be taking
small steps. A principle not mentioned in the FRS book, but given in the overview on
the inner cover is:

TDD Principle: Child Test
How do you get a test case running that turns out to be too big? Write a smaller test
case that represents the broken part of the bigger test case. Get the smaller test case
running. Reintroduce the larger test case.

So, what should I take first? It seems accumulating the entered code seems natural:
having a string and adding each pressed digit to this seems rather simple. But—
how do I translate from the Button enumeration values to characters? A large switch
in SafeImpl? A public method in Button? A map lookup in SafeImpl? I decide to
keep Button simple and generally prefer using to look up in data structures to large



10 z TDD of Safe

switches. To force this design into action I comment my iteration 3 test case out and
turn my attention to the child tests.

2.4 Iteration 4: Child Test/Accumulating Dig-
its

OK, press “1” and see the display showing “1”, press “7” and see the display showing
“17”, etc.

Listing: examples/safe/iteration-4/TestSafe.java

import org . j u n i t . ∗ ;
import s t a t i c org . j u n i t . Assert . ∗ ;

/∗ ∗ T e s t c a s e s f o r S a f e .
∗ /
public c l a s s Tes tSa fe {

private Safe s a f e ;

@Before
public void setup ( ) {

s a f e = new SafeImpl ( ) ;
}

@Test
public void shouldInit ial lyBeLockedAndCleanDisplay ( ) {

a s s e r t E q u a l s ( " Display must be empty " ,
" " , s a f e . readDisplay ( ) ) ;

a sser tTrue ( " Safe must be locked " , s a f e . isLocked ( ) ) ;
}

@Test
public void shouldDisplay123CodeAsEntered ( ) {

s a f e . enter ( Button .KEY ) ;
s a f e . enter ( Button . D1 ) ;
s a f e . enter ( Button . D2 ) ;
s a f e . enter ( Button . D3 ) ;
a s s e r t E q u a l s ( " Display must be 123 " ,

" 123 " , s a f e . readDisplay ( ) ) ;
a sser tTrue ( " Safe must be locked " , s a f e . isLocked ( ) ) ;

}
/∗
@Test
p u b l i c v o i d s h o u l d U n l o c k S a f e O n C o r r e c t C o d e ( ) {

s a f e . e n t e r ( Button . KEY ) ;
s a f e . e n t e r ( Button . D1 ) ;
s a f e . e n t e r ( Button . D2 ) ;
s a f e . e n t e r ( Button . D3 ) ;
s a f e . e n t e r ( Button . D4 ) ;
s a f e . e n t e r ( Button . D5 ) ;
s a f e . e n t e r ( Button . D6 ) ;
a s s e r t E q u a l s (" D i s p l a y must be 123456" ,

"123456" , s a f e . r e a d D i s p l a y ( ) ) ;
a s s e r t T r u e (" S a f e must be u n l o c k e d " , ! s a f e . i s L o c k e d ( ) ) ;

}
∗ /



Iteration 4: Child Test/Accumulating Digits z 11

@Test
public void shouldAccumulateDigitsInDisplay ( ) {

s a f e . enter ( Button .KEY ) ;
s a f e . enter ( Button . D1 ) ;
a s s e r t E q u a l s ( " Display must be 1 " ,

" 1 " , s a f e . readDisplay ( ) ) ;
s a f e . enter ( Button . D7 ) ;
a s s e r t E q u a l s ( " Display must be 17 " ,

" 17 " , s a f e . readDisplay ( ) ) ;
s a f e . enter ( Button . D9 ) ;
a s s e r t E q u a l s ( " Display must be 179 " ,

" 179 " , s a f e . readDisplay ( ) ) ;
}

}

Step 3: Make a little change: introduce storage for entered digits, and prepare the
lookup. A bit of coding quickly shows that handling trailing spaces using a String
type is ackward, so I turn my attention to keeping a array of six chars. The require-
ment that pushing the key, lock, and pin buttons also require some extra logic. I arrive
at:

Listing: examples/safe/iteration-4/SafeImpl.java

import j ava . u t i l . ∗ ;

/∗ ∗ I m p l e m e n t a t i o n o f t h e S a f e .
∗ /
public c l a s s SafeImpl implements Safe {

private char [ ] displayContents ;
private i n t index ;
private Map<Button , Character > map ;

public SafeImpl ( ) {
displayContents = new char [ 6 ] ;
for ( i n t i = 0 ; i < 6 ; i ++) displayContents [ i ] = ’ ’ ;
index = 0 ;
map = new HashMap<Button , Character > ( ) ;
map . put ( Button . D1 , ’ 1 ’ ) ;
map . put ( Button . D2 , ’ 2 ’ ) ;
map . put ( Button . D3 , ’ 3 ’ ) ;
map . put ( Button . D7 , ’ 7 ’ ) ;
map . put ( Button . D9 , ’ 9 ’ ) ;

}

public void enter ( Button button ) {
Character c = map . get ( button ) ;
i f ( c != null ) {

displayContents [ index ] = c . charValue ( ) ;
index = ( index +1) % 6 ;

}
}

public boolean isLocked ( ) {
return true ;

}

public S t r i n g readDisplay ( ) {
return S t r i n g . valueOf ( displayContents ) ;



12 z TDD of Safe

}

}

which Step 4: Run all tests and see them all succeed. I need a test case to triangulate the
rest of the key symbols into the production code.

] Initial: Display reads 6 spaces. Safe is locked.
] Enter (key,1,2,3) gives “123 ” as output. Safe is locked.
] Enter (key,1,2,3,4,5,6) gives “OPEN ”, safe unlocked.
] Enter (1,2) gives “ERROR ”. Safe locked.
] Enter (key,1,2,4,3,5,6) gives “CLOSED”. Safe locked.
] Unlocked safe: Enter (lock) gives empty display. Safe locked.
] Accumulate digits in the display when pressing 179.
] Enter codes with digits 0, 4, 5, 6, and 8.

2.5 Iteration 5: Unlock Safe—Take Two

Now I can return to the main test—unlocking the safe. I simply uncomment the test
case from iteration 3.

Listing: examples/safe/iteration-5/TestSafe.java

import org . j u n i t . ∗ ;
import s t a t i c org . j u n i t . Assert . ∗ ;

/∗ ∗ T e s t c a s e s f o r S a f e .
∗ /
public c l a s s Tes tSa fe {

private Safe s a f e ;

@Before
public void setup ( ) {

s a f e = new SafeImpl ( ) ;
}

@Test
public void shouldInit ial lyBeLockedAndCleanDisplay ( ) {

a s s e r t E q u a l s ( " Display must be empty " ,
" " , s a f e . readDisplay ( ) ) ;

a sser tTrue ( " Safe must be locked " , s a f e . isLocked ( ) ) ;
}

@Test
public void shouldDisplay123CodeAsEntered ( ) {

s a f e . enter ( Button .KEY ) ;
s a f e . enter ( Button . D1 ) ;
s a f e . enter ( Button . D2 ) ;
s a f e . enter ( Button . D3 ) ;
a s s e r t E q u a l s ( " Display must be 123 " ,

" 123 " , s a f e . readDisplay ( ) ) ;
a sser tTrue ( " Safe must be locked " , s a f e . isLocked ( ) ) ;

}

@Test
public void shouldUnlockSafeOnCorrectCode ( ) {



Iteration 5: Unlock Safe—Take Two z 13

s a f e . enter ( Button .KEY ) ;
s a f e . enter ( Button . D1 ) ;
s a f e . enter ( Button . D2 ) ;
s a f e . enter ( Button . D3 ) ;
s a f e . enter ( Button . D4 ) ;
s a f e . enter ( Button . D5 ) ;
a s s e r t E q u a l s ( " Display must be 12345 " ,

" 12345 " , s a f e . readDisplay ( ) ) ;
s a f e . enter ( Button . D6 ) ;
a s s e r t E q u a l s ( " Display must be OPEN" ,

"OPEN " , s a f e . readDisplay ( ) ) ;

a sser tTrue ( " Safe must be unlocked " , ! s a f e . isLocked ( ) ) ;
}

@Test
public void shouldAccumulateDigitsInDisplay ( ) {

s a f e . enter ( Button .KEY ) ;
s a f e . enter ( Button . D1 ) ;
a s s e r t E q u a l s ( " Display must be 1 " ,

" 1 " , s a f e . readDisplay ( ) ) ;
s a f e . enter ( Button . D7 ) ;
a s s e r t E q u a l s ( " Display must be 17 " ,

" 17 " , s a f e . readDisplay ( ) ) ;
s a f e . enter ( Button . D9 ) ;
a s s e r t E q u a l s ( " Display must be 179 " ,

" 179 " , s a f e . readDisplay ( ) ) ;
}

}

Step 2: Run all tests and see the new one fail:

1) shouldUnlockSafeOnCorrectCode(TestSafe)
org.junit.ComparisonFailure: Display must be 123456

expected:<123[456]> but was:<123[ ]>

which force me to triangulate more of the mapping between buttons and characters
into place.

public SafeImpl ( ) {
displayContents = new char [ 6 ] ;
for ( i n t i = 0 ; i < 6 ; i ++) displayContents [ i ] = ’ ’ ;
index = 0 ;
map = new HashMap<Button , Character > ( ) ;
map . put ( Button . D1 , ’ 1 ’ ) ;
map . put ( Button . D2 , ’ 2 ’ ) ;
map . put ( Button . D3 , ’ 3 ’ ) ;
map . put ( Button . D4 , ’ 4 ’ ) ;
map . put ( Button . D5 , ’ 5 ’ ) ;
map . put ( Button . D6 , ’ 6 ’ ) ;
map . put ( Button . D7 , ’ 7 ’ ) ;
map . put ( Button . D9 , ’ 9 ’ ) ;

}

Next only the last assert complains:



14 z TDD of Safe

1) shouldUnlockSafeOnCorrectCode(TestSafe)
java.lang.AssertionError: Safe must be unlocked

Step 3: Make a little change involves introducing a boolean and the code matching
algorithm:

Listing: examples/safe/iteration-5/SafeImpl.java

import j ava . u t i l . ∗ ;

/∗ ∗ I m p l e m e n t a t i o n o f t h e S a f e .
∗ /
public c l a s s SafeImpl implements Safe {

private char [ ] displayContents ;
private i n t index ;
private boolean locked ;
private Map<Button , Character > map ;

public SafeImpl ( ) {
displayContents = new char [ 6 ] ;
for ( i n t i = 0 ; i < 6 ; i ++) displayContents [ i ] = ’ ’ ;

locked = t rue ;

index = 0 ;
map = new HashMap<Button , Character > ( ) ;
map . put ( Button . D1 , ’ 1 ’ ) ;
map . put ( Button . D2 , ’ 2 ’ ) ;
map . put ( Button . D3 , ’ 3 ’ ) ;
map . put ( Button . D4 , ’ 4 ’ ) ;
map . put ( Button . D5 , ’ 5 ’ ) ;
map . put ( Button . D6 , ’ 6 ’ ) ;
map . put ( Button . D7 , ’ 7 ’ ) ;
map . put ( Button . D9 , ’ 9 ’ ) ;

}

public void enter ( Button button ) {
Character c = map . get ( button ) ;
i f ( c != null ) {

displayContents [ index ] = c . charValue ( ) ;
index = ( index +1) % 6 ;

}
i f ( readDisplay ( ) . equals ( " 123456 " ) ) {

locked = f a l s e ;
d isplayContents [ 0 ] = ’O’ ;
displayContents [ 1 ] = ’P ’ ;
displayContents [ 2 ] = ’E ’ ;
displayContents [ 3 ] = ’N’ ;
displayContents [ 4 ] = displayContents [ 5 ] = ’ ’ ;

}
}

public boolean isLocked ( ) {
return locked ;

}

public S t r i n g readDisplay ( ) {
return S t r i n g . valueOf ( displayContents ) ;

}



Iteration 5: Unlock Safe—Take Two z 15

}

Ups—no test for the display reading “OPEN”! Actually the test case is wrong! I have
not been careful enough when I converted the items on my test list into test cases.
This is regretable and probably because I have done this work without doing pair
programming. Never the less this blunder carries a lesson—we do make mistakes,
and when we do so—well—we have to correct them as soon as possible.

So—I quickly adjust the test case to the proper specification.

@Test
public void shouldUnlockSafeOnCorrectCode ( ) {

s a f e . enter ( Button .KEY ) ;
s a f e . enter ( Button . D1 ) ;
s a f e . enter ( Button . D2 ) ;
s a f e . enter ( Button . D3 ) ;
s a f e . enter ( Button . D4 ) ;
s a f e . enter ( Button . D5 ) ;
a s s e r t E q u a l s ( " Display must be 12345 " ,

" 12345 " , s a f e . readDisplay ( ) ) ;
s a f e . enter ( Button . D6 ) ;
a s s e r t E q u a l s ( " Display must be OPEN" ,

"OPEN " , s a f e . readDisplay ( ) ) ;

a sser tTrue ( " Safe must be unlocked " , ! s a f e . isLocked ( ) ) ;
}

Which of course leads to Step 2: Run all tests and see the new one fail. The Step 3: Make
a little change:

public void enter ( Button button ) {
Character c = map . get ( button ) ;
i f ( c != null ) {

displayContents [ index ] = c . charValue ( ) ;
index = ( index +1) % 6 ;

}
i f ( readDisplay ( ) . equals ( " 123456 " ) ) {

locked = f a l s e ;
d isplayContents [ 0 ] = ’O’ ;
displayContents [ 1 ] = ’P ’ ;
displayContents [ 2 ] = ’E ’ ;
displayContents [ 3 ] = ’N’ ;
displayContents [ 4 ] = displayContents [ 5 ] = ’ ’ ;

}
}

Step 4: Run all tests and see them all succeed. I note that I do not really like the tedious
way to set a completely new contents of the display. However, this iteration gives
me no excuse to change this code—but looking over the test list I see that some of
the later iterations will make duplicated code (setting the display to CLOSED and
ERROR) and thus refactor it later.



16 z TDD of Safe

] Initial: Display reads 6 spaces. Safe is locked.
] Enter (key,1,2,3) gives “123 ” as output. Safe is locked.
] Enter (key,1,2,3,4,5,6) gives “OPEN ”, safe unlocked.
] Enter (1,2) gives “ERROR ”. Safe locked.
] Enter (key,1,2,4,3,5,6) gives “CLOSED”. Safe locked.
] Unlocked safe: Enter (lock) gives empty display. Safe locked.
] Accumulate digits in the display when pressing 179.
] Enter codes with digits 0, 4, 5, 6, and 8.

2.6 Iteration 6: Wrong Code

It is time to enter a wrong code: Enter (key,1,2,4,3,5,6) gives “CLOSED”. Safe locked.

Step 1: Quickly add a test.

Listing: examples/safe/iteration-6/TestSafe.java

import org . j u n i t . ∗ ;
import s t a t i c org . j u n i t . Assert . ∗ ;

/∗ ∗ T e s t c a s e s f o r S a f e .
∗ /
public c l a s s Tes tSa fe {

private Safe s a f e ;

@Before
public void setup ( ) {

s a f e = new SafeImpl ( ) ;
}

@Test
public void shouldInit ial lyBeLockedAndCleanDisplay ( ) {

a s s e r t E q u a l s ( " Display must be empty " ,
" " , s a f e . readDisplay ( ) ) ;

a sser tTrue ( " Safe must be locked " , s a f e . isLocked ( ) ) ;
}

@Test
public void shouldDisplay123CodeAsEntered ( ) {

s a f e . enter ( Button .KEY ) ;
s a f e . enter ( Button . D1 ) ;
s a f e . enter ( Button . D2 ) ;
s a f e . enter ( Button . D3 ) ;
a s s e r t E q u a l s ( " Display must be 123 " ,

" 123 " , s a f e . readDisplay ( ) ) ;
a sser tTrue ( " Safe must be locked " , s a f e . isLocked ( ) ) ;

}

@Test
public void shouldUnlockSafeOnCorrectCode ( ) {

s a f e . enter ( Button .KEY ) ;
s a f e . enter ( Button . D1 ) ;
s a f e . enter ( Button . D2 ) ;
s a f e . enter ( Button . D3 ) ;
s a f e . enter ( Button . D4 ) ;
s a f e . enter ( Button . D5 ) ;
a s s e r t E q u a l s ( " Display must be 12345 " ,



Iteration 6: Wrong Code z 17

" 12345 " , s a f e . readDisplay ( ) ) ;
s a f e . enter ( Button . D6 ) ;
a s s e r t E q u a l s ( " Display must be OPEN" ,

"OPEN " , s a f e . readDisplay ( ) ) ;

a sser tTrue ( " Safe must be unlocked " , ! s a f e . isLocked ( ) ) ;
}

@Test
public void shouldAccumulateDigitsInDisplay ( ) {

s a f e . enter ( Button .KEY ) ;
s a f e . enter ( Button . D1 ) ;
a s s e r t E q u a l s ( " Display must be 1 " ,

" 1 " , s a f e . readDisplay ( ) ) ;
s a f e . enter ( Button . D7 ) ;
a s s e r t E q u a l s ( " Display must be 17 " ,

" 17 " , s a f e . readDisplay ( ) ) ;
s a f e . enter ( Button . D9 ) ;
a s s e r t E q u a l s ( " Display must be 179 " ,

" 179 " , s a f e . readDisplay ( ) ) ;
}

@Test
public void shouldKeepLockedForWrongCode ( ) {

s a f e . enter ( Button .KEY ) ;
s a f e . enter ( Button . D1 ) ;
s a f e . enter ( Button . D2 ) ;
s a f e . enter ( Button . D4 ) ;
s a f e . enter ( Button . D3 ) ;
s a f e . enter ( Button . D5 ) ;
s a f e . enter ( Button . D6 ) ;
a s s e r t E q u a l s ( " Display must be CLOSED" ,

"CLOSED" , s a f e . readDisplay ( ) ) ;

a sser tTrue ( " Safe must be s tay locked " , s a f e . isLocked ( ) ) ;
}

}

My first attempt at Step 3: Make a little change makes 4 out of 5 testcases fail!

public void enter ( Button button ) {
Character c = map . get ( button ) ;
i f ( c != null ) {

displayContents [ index ] = c . charValue ( ) ;
index = ( index +1) % 6 ;

}
i f ( readDisplay ( ) . equals ( " 123456 " ) ) {

locked = f a l s e ;
d isplayContents [ 0 ] = ’O’ ;
displayContents [ 1 ] = ’P ’ ;
displayContents [ 2 ] = ’E ’ ;
displayContents [ 3 ] = ’N’ ;
displayContents [ 4 ] = displayContents [ 5 ] = ’ ’ ;

} e lse i f ( index == 0 ) { / / 6 d i g i t s e n t e r e d
displayContents [ 0 ] = ’C ’ ;
displayContents [ 1 ] = ’L ’ ;
displayContents [ 2 ] = ’O’ ;
displayContents [ 3 ] = ’ S ’ ;
displayContents [ 4 ] = ’E ’ ;
displayContents [ 5 ] = ’D ’ ;



18 z TDD of Safe

}
}

The typical complaint from JUnit is

1) shouldDisplay123CodeAsEntered(TestSafe)
org.junit.ComparisonFailure: Display must be 123

expected:<123[ ]> but was:<123[SED]>
at org.junit.Assert.assertEquals(Assert.java:99)

Ahh—the key button does not advance index and thus “CLOSED” is set into the
displayContents. Making the first if emcompass the whole block solves the problem
and I get Step 4: Run all tests and see them all succeed.

Step 5: Refactor to remove duplication: it is obvious to make a private method to set the
contents of the character array, setDisplayContents, which can be used three places
in the production code. The code is reduced in size and duplication is avoided.

Listing: examples/safe/iteration-6/SafeImpl.java

import j ava . u t i l . ∗ ;

/∗ ∗ I m p l e m e n t a t i o n o f t h e S a f e .
∗ /
public c l a s s SafeImpl implements Safe {

private char [ ] displayContents ;
private i n t index ;
private boolean locked ;
private Map<Button , Character > map ;

public SafeImpl ( ) {
displayContents = new char [ 6 ] ;
se tDisplayContents ( " " ) ;

locked = t rue ;

index = 0 ;
map = new HashMap<Button , Character > ( ) ;
map . put ( Button . D1 , ’ 1 ’ ) ;
map . put ( Button . D2 , ’ 2 ’ ) ;
map . put ( Button . D3 , ’ 3 ’ ) ;
map . put ( Button . D4 , ’ 4 ’ ) ;
map . put ( Button . D5 , ’ 5 ’ ) ;
map . put ( Button . D6 , ’ 6 ’ ) ;
map . put ( Button . D7 , ’ 7 ’ ) ;
map . put ( Button . D9 , ’ 9 ’ ) ;

}

public void enter ( Button button ) {
Character c = map . get ( button ) ;
i f ( c != null ) {

displayContents [ index ] = c . charValue ( ) ;
index = ( index +1) % 6 ;

i f ( readDisplay ( ) . equals ( " 123456 " ) ) {
locked = f a l s e ;
se tDisplayContents ( "OPEN " ) ;
displayContents [ 4 ] = displayContents [ 5 ]= ’ ’ ;



Iteration 7: Getting 0 and 8 to work. z 19

} e lse i f ( index == 0 ) { / / 6 d i g i t s e n t e r e d
setDisplayContents ( "CLOSED" ) ;

}
}

}

public boolean isLocked ( ) {
return locked ;

}

public S t r i n g readDisplay ( ) {
return S t r i n g . valueOf ( displayContents ) ;

}

/∗ ∗ PRECONDITION : s t r i n g must be e x a c t l y 6 c h a r a t e r s l ong ∗ /
private void setDisplayContents ( S t r i n g s ixCharSt r ing ) {

for ( i n t i = 0 ; i < 6 ; i ++)
displayContents [ i ] = s ixCharSt r ing . charAt ( i ) ;

}
}

] Initial: Display reads 6 spaces. Safe is locked.
] Enter (key,1,2,3) gives “123 ” as output. Safe is locked.
] Enter (key,1,2,3,4,5,6) gives “OPEN ”, safe unlocked.
] Enter (1,2) gives “ERROR ”. Safe locked.
] Enter (key,1,2,4,3,5,6) gives “CLOSED”. Safe locked.
] Unlocked safe: Enter (lock) gives empty display. Safe locked.
] Accumulate digits in the display when pressing 179.
] Enter codes with digits 0, 4, 5, 6, and 8.

2.7 Iteration 7: Getting 0 and 8 to work.
I use Representative Data: Each button requires its own processing (as each button is
mapped into a specific character) and the item Enter codes with digits 0, 4, 5, 6, and 8
highlights that I still need to test with button 0 and 8. Step 1: Quickly add a test:

@Test
public void shouldDisplay908CodeAsEntered ( ) {

s a f e . enter ( Button .KEY ) ;
s a f e . enter ( Button . D9 ) ;
s a f e . enter ( Button . D0 ) ;
s a f e . enter ( Button . D8 ) ;
a s s e r t E q u a l s ( " Display must be 908 " ,

" 908 " , s a f e . readDisplay ( ) ) ;
}

Step 3: Make a little change is trivial and omitted here—look into the code.

] Initial: Display reads 6 spaces. Safe is locked.
] Enter (key,1,2,3) gives “123 ” as output. Safe is locked.
] Enter (key,1,2,3,4,5,6) gives “OPEN ”, safe unlocked.
] Enter (1,2) gives “ERROR ”. Safe locked.
] Enter (key,1,2,4,3,5,6) gives “CLOSED”. Safe locked.
] Unlocked safe: Enter (lock) gives empty display. Safe locked.
] Accumulate digits in the display when pressing 179.
] Enter codes with digits 0, 4, 5, 6, and 8.



20 z TDD of Safe

2.8 Iteration 8: Forgetting the KEY Button

Almost finished. Let us try to get the “ERROR” situation. Step 1: Quickly add a test:

@Test
public void shouldDisplayERRORWhenForGettingKeyButton ( ) {
s a f e . enter ( Button . D1 ) ;
a s s e r t E q u a l s ( " Display must be ERROR" ,

"ERROR " , s a f e . readDisplay ( ) ) ;
s a f e . enter ( Button . D2 ) ;
a s s e r t E q u a l s ( " Display must be ERROR" ,

"ERROR " , s a f e . readDisplay ( ) ) ;
a sser tTrue ( " Safe must be s tay locked " , s a f e . isLocked ( ) ) ;

}

which of course Step 2: Run all tests and see the new one fail. To Step 3: Make a little
change I introduce a boolean enterCodeState that must be true if the user is entering
a new code. It is of course set to false in the constructor. I massage the production
code somewhat, using classic switching for the state machine to end up in Step 4: Run
all tests and see them all succeed with the following code:

public void enter ( Button button ) {
Character c = map . get ( button ) ;
/ / S t a t e m a c h i n e
i f ( enterCodeState ) { / / S a f e i s e x p e c t i n g a c o d e

i f ( c != null ) {
displayContents [ index ] = c . charValue ( ) ;
index = ( index +1) % 6 ;

i f ( readDisplay ( ) . equals ( " 123456 " ) ) {
locked = f a l s e ;
se tDisplayContents ( "OPEN " ) ;

} e lse i f ( index == 0 ) { / / 6 d i g i t s e n t e r e d
setDisplayContents ( "CLOSED" ) ;

}
}

} e lse { / / S a f e i s not e x p e c t i n g a c o d e
i f ( c != null ) {

setDisplayContents ( "ERROR " ) ;
}
i f ( button == Button .KEY ) {

enterCodeState = t rue ;
se tDisplayContents ( " " ) ;

}
}

}

One thing nags me: when is the enterCodeState set to false? Never! And the stories
does not really tell me when the safe should not be in the enter a code state. So—I have
to talk to the users or customers. They tell me that if you press the lock key then the
safe should revert to the initial/waiting state. Also the safe should enter this state
after unlocking it or if the entered pin code was incorrect. This can be formulated as
a stories.

Story 1a: Regret Opening Safe The user starts entering the proper pin code, “1”, “2”,
“3”, but regrets to open the safe. The user hits the lock button, the display clears, and
the safe remains locked.



Iteration 8: Forgetting the KEY Button z 21

Story 4a: Completed Pin Code The user enters a 6-digit pin code (valid or invalid).
The safe returns to the initial/waiting state.

I formulate this as items on the test list Safe goes to initial state if lock button entered and
Safe returns to initial state after 6 digits entered.

While I achieve Step 4: Run all tests and see them all succeed, the analyzability of this
code is not good: nested ifs are notoriously difficult to analyze. So Step 5: Refac-
tor to remove duplication, chopping up the structure using private methods. Another
approach would be to refactor the design to use the STATE pattern.

Listing: examples/safe/iteration-8/SafeImpl.java

import j ava . u t i l . ∗ ;

/∗ ∗ I m p l e m e n t a t i o n o f t h e S a f e .
∗ /
public c l a s s SafeImpl implements Safe {

private char [ ] displayContents ;
private i n t index ;
private boolean locked , enterCodeState ;
private Map<Button , Character > map ;

public SafeImpl ( ) {
displayContents = new char [ 6 ] ;
se tDisplayContents ( " " ) ;

locked = t rue ; enterCodeState = f a l s e ;

index = 0 ;
map = new HashMap<Button , Character > ( ) ;
map . put ( Button . D1 , ’ 1 ’ ) ; map . put ( Button . D2 , ’ 2 ’ ) ;
map . put ( Button . D3 , ’ 3 ’ ) ; map . put ( Button . D4 , ’ 4 ’ ) ;
map . put ( Button . D5 , ’ 5 ’ ) ; map . put ( Button . D6 , ’ 6 ’ ) ;
map . put ( Button . D7 , ’ 7 ’ ) ; map . put ( Button . D8 , ’ 8 ’ ) ;
map . put ( Button . D9 , ’ 9 ’ ) ; map . put ( Button . D0 , ’ 0 ’ ) ;

}

public void enter ( Button button ) {
/ / S t a t e m a c h i n e
i f ( enterCodeState ) { / / S a f e i s e x p e c t i n g a c o d e

handleButtonInEnterCodeState ( button ) ;
} e lse { / / S a f e i s not e x p e c t i n g a c o d e

h a n d l e B u t t o n I n I n i t i a l S t a t e ( button ) ;
}

}

public boolean isLocked ( ) {
return locked ;

}

public S t r i n g readDisplay ( ) {
return S t r i n g . valueOf ( displayContents ) ;

}

/∗ ∗ PRECONDITION : s t r i n g must be e x a c t l y 6 c h a r a t e r s l ong ∗ /
private void setDisplayContents ( S t r i n g s ixCharSt r ing ) {

for ( i n t i = 0 ; i < 6 ; i ++)
displayContents [ i ] = s ixCharSt r ing . charAt ( i ) ;

}



22 z TDD of Safe

private void handleButtonInEnterCodeState ( Button button ) {
Character c = map . get ( button ) ;
i f ( c != null ) {

displayContents [ index ] = c . charValue ( ) ;
index = ( index +1) % 6 ;

i f ( readDisplay ( ) . equals ( " 123456 " ) ) {
locked = f a l s e ;
se tDisplayContents ( "OPEN " ) ;

} e lse i f ( index == 0 ) { / / 6 d i g i t s e n t e r e d
setDisplayContents ( "CLOSED" ) ;

}
}

}

private void h a n d l e B u t t o n I n I n i t i a l S t a t e ( Button button ) {
Character c = map . get ( button ) ;
i f ( c != null ) {

setDisplayContents ( "ERROR " ) ;
}
i f ( button == Button .KEY ) {

enterCodeState = t rue ;
se tDisplayContents ( " " ) ;

}
}

}

Reviewing the final code I wonder if it is correct that the key button is processed
when in initial state. Story 3 states that whenever I hit the key button the safe should
begin to accept a new code, but this aspect has not really been captured by any item
on the test list, and the production code may not handle it as far as I can see. Thus
one more for the test list.

] Initial: Display reads 6 spaces. Safe is locked.
] Enter (key,1,2,3) gives “123 ” as output. Safe is locked.
] Enter (key,1,2,3,4,5,6) gives “OPEN ”, safe unlocked.
] Enter (1,2) gives “ERROR ”. Safe locked.
] Enter (key,1,2,4,3,5,6) gives “CLOSED”. Safe locked.
] Unlocked safe: Enter (lock) gives empty display. Safe locked.
] Accumulate digits in the display when pressing 179.
] Enter codes with digits 0, 4, 5, 6, and 8.
] Safe goes to initial state if lock button entered.
] Safe returns to initial state after 6 digits entered.
] Enter (1,2,key,1,2,3,4,5,6) gives unlocked safe.

2.9 Iteration 9: Entering Key In The Middle Of
Things

The last observation nags me so this is the next one step test. Step 1: Quickly add a test:

@Test
public void shouldOpenSafeAfterError ( ) {
s a f e . enter ( Button . D1 ) ;



Iteration 9: Entering Key In The Middle Of Things z 23

s a f e . enter ( Button . D2 ) ;
a s s e r t E q u a l s ( " Display must be ERROR" ,

"ERROR " , s a f e . readDisplay ( ) ) ;
s a f e . enter ( Button .KEY ) ;
s a f e . enter ( Button . D1 ) ;
s a f e . enter ( Button . D2 ) ;
s a f e . enter ( Button . D3 ) ;
s a f e . enter ( Button . D4 ) ;
s a f e . enter ( Button . D5 ) ;
s a f e . enter ( Button . D6 ) ;
a s s e r t E q u a l s ( " Display must be OPEN" ,

"OPEN " , s a f e . readDisplay ( ) ) ;

a sser tTrue ( " Safe must be unlocked " , ! s a f e . isLocked ( ) ) ;
}

which pass. No need to have worried about the production code but the test is im-
portant as we now have the requirement by the story covered by our test suite and
are thus guarded against failures if we later have to modify the code.

The test code contains duplicated code now. Step 5: Refactor to remove duplication.
@Test

public void shouldOpenSafeAfterError ( ) {
s a f e . enter ( Button . D1 ) ;
s a f e . enter ( Button . D2 ) ;
a s s e r t E q u a l s ( " Display must be ERROR" ,

"ERROR " , s a f e . readDisplay ( ) ) ;
enterCorrectCode ( ) ;
a s s e r t E q u a l s ( " Display must be OPEN" ,

"OPEN " , s a f e . readDisplay ( ) ) ;
a sser tTrue ( " Safe must be unlocked " , ! s a f e . isLocked ( ) ) ;

}

and
private void enterCorrectCode ( ) {

s a f e . enter ( Button .KEY ) ;
s a f e . enter ( Button . D1 ) ;
s a f e . enter ( Button . D2 ) ;
s a f e . enter ( Button . D3 ) ;
s a f e . enter ( Button . D4 ) ;
s a f e . enter ( Button . D5 ) ;
a s s e r t E q u a l s ( " Display must be 12345 " ,

" 12345 " , s a f e . readDisplay ( ) ) ;
s a f e . enter ( Button . D6 ) ;

}

] Initial: Display reads 6 spaces. Safe is locked.
] Enter (key,1,2,3) gives “123 ” as output. Safe is locked.
] Enter (key,1,2,3,4,5,6) gives “OPEN ”, safe unlocked.
] Enter (1,2) gives “ERROR ”. Safe locked.
] Enter (key,1,2,4,3,5,6) gives “CLOSED”. Safe locked.
] Unlocked safe: Enter (lock) gives empty display. Safe locked.
] Accumulate digits in the display when pressing 179.
] Enter codes with digits 0, 4, 5, 6, and 8.
] Safe goes to initial state if lock button entered.
] Safe returns to initial state after 6 digits entered.
] Enter (1,2,key,1,2,3,4,5,6) gives unlocked safe.



24 z TDD of Safe

2.10 Iteration 10: Locking the safe.

Let us try to lock it again. Step 1: Quickly add a test.

@Test
public void shouldLockTheSafe ( ) {

enterCorrectCode ( ) ;
asser tTrue ( " Safe must be unlocked " , ! s a f e . isLocked ( ) ) ;

s a f e . enter ( Button .LOCK) ;
asser tTrue ( " Safe must be locked again " , s a f e . isLocked ( ) ) ;
a s s e r t E q u a l s ( " Display must be c leared " ,

" " , s a f e . readDisplay ( ) ) ;
}

Step 2: Run all tests and see the new one fail. Step 3: Make a little change is relatively
simple.

public void enter ( Button button ) {
/ / S t a t e m a c h i n e
i f ( button == Button .LOCK ) {

enterCodeState = f a l s e ;
locked = t rue ;
se tDisplayContents ( " " ) ;

}
i f ( enterCodeState ) { / / S a f e i s e x p e c t i n g a c o d e

handleButtonInEnterCodeState ( button ) ;
} e lse { / / S a f e i s not e x p e c t i n g a c o d e

h a n d l e B u t t o n I n I n i t i a l S t a t e ( button ) ;
}

}

Step 4: Run all tests and see them all succeed. However, I wish that my code more clearly
express the fact that the safe is a state machine that changes state every time the
user presses a button. I therefore like the enter method to contain the button event
processing. At the moment the code to handle pressing the key button is hidden
within the handleButtonInInitialState method.

Again, I like that I have very free hands in experimenting with my code as the test
cases developed so far will have a high probability of catching any mistakes in my
refactoring. Remember that refactoring means that no changes are made to external
behaviour of the system and the test cases are really tests of this external behaviour.

Working a bit with the system, moving code around and making up new helper meth-
ods, I end up with code that better express the button event processing nature of the
state machine.

public void enter ( Button button ) {
/ / Handle s t a t e chang ing b u t t o n s
i f ( button == Button .KEY ) { / / KEY

enterCodeState = t rue ;
se tDisplayContents ( " " ) ;

} e lse i f ( button == Button .LOCK ) { / / LOCK
enterCodeState = f a l s e ;
se tDisplayContents ( " " ) ;
locked = t rue ;

} e lse { / / DIGIT
Character c = map . get ( button ) ;



Iteration 11: Go to Initial State On Lock Button. z 25

i f ( enterCodeState ) {
addCharacterToDisplay ( c ) ;

} e lse {
f l a g E r r o r ( ) ;

}
}

}

private void addCharacterToDisplay ( char c ) {
displayContents [ index ] = c ;
index = ( index +1) % 6 ;

i f ( readDisplay ( ) . equals ( " 123456 " ) ) {
locked = f a l s e ;
se tDisplayContents ( "OPEN " ) ;

} e lse i f ( index == 0 ) { / / 6 d i g i t s e n t e r e d
setDisplayContents ( "CLOSED" ) ;

}
}

private void f l a g E r r o r ( ) {
setDisplayContents ( "ERROR " ) ;

}

which pass all nine tests.

At this point, I am not satisifed yet, however. The state that exactly six digits have
been entered is also a special state, so I would like to show this more precisely in the
code as well. Thus I again rework the code to introduce an Enum for the states of
the safe. This process took me over one hour—and ended up in Do Over. The code
became longer, did not pass the test code, and became more complex. Refactoring
should increase maintainability, not reduce it. Therefore I threw it away and asked
SubVersion to retrieve the snapshot I comitted just before setting commencing the
last unsuccessful refactoring adventure.

] Initial: Display reads 6 spaces. Safe is locked.
] Enter (key,1,2,3) gives “123 ” as output. Safe is locked.
] Enter (key,1,2,3,4,5,6) gives “OPEN ”, safe unlocked.
] Enter (1,2) gives “ERROR ”. Safe locked.
] Enter (key,1,2,4,3,5,6) gives “CLOSED”. Safe locked.
] Unlocked safe: Enter (lock) gives empty display. Safe locked.
] Accumulate digits in the display when pressing 179.
] Enter codes with digits 0, 4, 5, 6, and 8.
] Safe goes to initial state if lock button entered.
] Safe returns to initial state after 6 digits entered.
] Enter (1,2,key,1,2,3,4,5,6) gives unlocked safe.

2.11 Iteration 11: Go to Initial State On Lock
Button.

Only a few items on the test list. I pick Safe goes to initial state if lock button entered.
That is, if the user hits key, 7, 0, 3, and then lock, the safe will switch from ’enter code’
state to the initial/waiting/locked state.



26 z TDD of Safe

@Test
public void shouldAbortUnlockingWhenLockButtonHit ( ) {

s a f e . enter ( Button .KEY ) ;
s a f e . enter ( Button . D7 ) ;
s a f e . enter ( Button . D0 ) ;
s a f e . enter ( Button . D3 ) ;
a s s e r t E q u a l s ( " Display must be 703 " ,

" 703 " , s a f e . readDisplay ( ) ) ;
s a f e . enter ( Button .LOCK) ;
a s s e r t E q u a l s ( " Display i s c l eared " ,

" " , s a f e . readDisplay ( ) ) ;
a sser tTrue ( " Safe must be s tay locked " , s a f e . isLocked ( ) ) ;

}

This test case actually pass right away. But what if I enter a new proper code right
after the above sequence? I better try. . .

@Test
public void shouldAbortUnlockingWhenLockButtonHit ( ) {

s a f e . enter ( Button .KEY ) ;
s a f e . enter ( Button . D7 ) ;
s a f e . enter ( Button . D0 ) ;
s a f e . enter ( Button . D3 ) ;
a s s e r t E q u a l s ( " Display must be 703 " ,

" 703 " , s a f e . readDisplay ( ) ) ;
s a f e . enter ( Button .LOCK) ;
a s s e r t E q u a l s ( " Display i s c l eared " ,

" " , s a f e . readDisplay ( ) ) ;
a sser tTrue ( " Safe must be s tay locked " , s a f e . isLocked ( ) ) ;
enterCorrectCode ( ) ;
asser tTrue ( " Safe must be unlocked " , ! s a f e . isLocked ( ) ) ;

}

And now it fails! The output gives me a strong hint as to what is wrong:

1) shouldAbortUnlockingWhenLockButtonHit(TestSafe)
org.junit.ComparisonFailure: Display must be 12345
expected:<[12345 ]> but was:<[45OSED]>

The first three digits entered, “703”, has advanced our index counter and it is not reset
when the user hits the lock button. Step 3: Make a little change.

public void enter ( Button button ) {
/ / Handle s t a t e chang ing b u t t o n s
i f ( button == Button .KEY ) { / / KEY

enterCodeState = t rue ;
se tDisplayContents ( " " ) ;

} e lse i f ( button == Button .LOCK ) { / / LOCK
enterCodeState = f a l s e ;
se tDisplayContents ( " " ) ;
locked = t rue ;
index = 0 ;

} e lse { / / DIGIT
Character c = map . get ( button ) ;
i f ( enterCodeState ) {

addCharacterToDisplay ( c ) ;
} e lse {

f l a g E r r o r ( ) ;



Iteration 12: Go to Enter Key Code State z 27

}
}

}

But should I not do the same thing when the key button is hit? Reset the index?
Reviewing the test code it seems that test case shouldOpenSafeAfterError test this,
but only after an error situation. Better put it onto the test list.

] Initial: Display reads 6 spaces. Safe is locked.
] Enter (key,1,2,3) gives “123 ” as output. Safe is locked.
] Enter (key,1,2,3,4,5,6) gives “OPEN ”, safe unlocked.
] Enter (1,2) gives “ERROR ”. Safe locked.
] Enter (key,1,2,4,3,5,6) gives “CLOSED”. Safe locked.
] Unlocked safe: Enter (lock) gives empty display. Safe locked.
] Accumulate digits in the display when pressing 179.
] Enter codes with digits 0, 4, 5, 6, and 8.
] Safe goes to initial state if lock button entered.
] Safe returns to initial state after 6 digits entered.
] Enter (1,2,key,1,2,3,4,5,6) gives unlocked safe.
] Safe goes to enter code state whenever key button entered.

2.12 Iteration 12: Go to Enter Key Code State

I persue the last observation. Step 1: Quickly add a test

@Test
public void shouldAlwaysGoToEnterCodeState ( ) {

s a f e . enter ( Button .KEY ) ;
s a f e . enter ( Button . D7 ) ;
s a f e . enter ( Button . D7 ) ;
enterCorrectCode ( ) ;
asser tTrue ( " Safe must be unlocked " , ! s a f e . isLocked ( ) ) ;

}

My intuition was correct:

1) shouldAlwaysGoToEnterCodeState(TestSafe)
org.junit.ComparisonFailure: Display must be 12345

expected:<[12345 ]> but was:<[5LOSED]>

The solution is resetting the index.

public void enter ( Button button ) {
/ / Handle s t a t e chang ing b u t t o n s
i f ( button == Button .KEY ) { / / KEY

enterCodeState = t rue ;
se tDisplayContents ( " " ) ;
index = 0 ;

} e lse i f ( button == Button .LOCK ) { / / LOCK
enterCodeState = f a l s e ;
se tDisplayContents ( " " ) ;
locked = t rue ;
index = 0 ;

} e lse { / / DIGIT



28 z TDD of Safe

Character c = map . get ( button ) ;
i f ( enterCodeState ) {

addCharacterToDisplay ( c ) ;
} e lse {

f l a g E r r o r ( ) ;
}

}
}

This Step 4: Run all tests and see them all succeed - but contains duplicated code: the
“set index to zero and clear the display contents” appear three places in the code. It
would be nice to Step 5: Refactor to remove duplication define a method to reset the safe:
reset().

Listing: examples/safe/iteration-12/SafeImpl.java

import j ava . u t i l . ∗ ;

/∗ ∗ I m p l e m e n t a t i o n o f t h e S a f e .
∗ /
public c l a s s SafeImpl implements Safe {

private char [ ] displayContents ;
private i n t index ;
private boolean locked , enterCodeState ;
private Map<Button , Character > map ;

public SafeImpl ( ) {
displayContents = new char [ 6 ] ;
r e s e t ( ) ;
locked = t rue ; enterCodeState = f a l s e ;

map = new HashMap<Button , Character > ( ) ;
map . put ( Button . D1 , ’ 1 ’ ) ; map . put ( Button . D2 , ’ 2 ’ ) ;
map . put ( Button . D3 , ’ 3 ’ ) ; map . put ( Button . D4 , ’ 4 ’ ) ;
map . put ( Button . D5 , ’ 5 ’ ) ; map . put ( Button . D6 , ’ 6 ’ ) ;
map . put ( Button . D7 , ’ 7 ’ ) ; map . put ( Button . D8 , ’ 8 ’ ) ;
map . put ( Button . D9 , ’ 9 ’ ) ; map . put ( Button . D0 , ’ 0 ’ ) ;

}

public void enter ( Button button ) {
/ / Handle s t a t e chang ing b u t t o n s
i f ( button == Button .KEY ) { / / KEY

r e s e t ( ) ;
enterCodeState = t rue ;

} e lse i f ( button == Button .LOCK ) { / / LOCK
r e s e t ( ) ;
enterCodeState = f a l s e ;
locked = t rue ;

} e lse { / / DIGIT
Character c = map . get ( button ) ;
i f ( enterCodeState ) {

addCharacterToDisplay ( c ) ;
} e lse {

f l a g E r r o r ( ) ;
}

}
}

private void addCharacterToDisplay ( char c ) {
displayContents [ index ] = c ;



Iteration 12: Go to Enter Key Code State z 29

index = ( index +1) % 6 ;

i f ( readDisplay ( ) . equals ( " 123456 " ) ) {
locked = f a l s e ;
se tDisplayContents ( "OPEN " ) ;

} e lse i f ( index == 0 ) { / / 6 d i g i t s e n t e r e d
setDisplayContents ( "CLOSED" ) ;

}
}

private void f l a g E r r o r ( ) {
setDisplayContents ( "ERROR " ) ;

}

/∗ ∗ r e s e t s t h e machine t o t h e
∗ i n i t i a l s t a t e .
∗ /

private void r e s e t ( ) {
setDisplayContents ( " " ) ;
index = 0 ;

}

public boolean isLocked ( ) {
return locked ;

}

public S t r i n g readDisplay ( ) {
return S t r i n g . valueOf ( displayContents ) ;

}

/∗ ∗ PRECONDITION : s t r i n g must be e x a c t l y 6 c h a r a t e r s l ong ∗ /
private void setDisplayContents ( S t r i n g s ixCharSt r ing ) {

for ( i n t i = 0 ; i < 6 ; i ++)
displayContents [ i ] = s ixCharSt r ing . charAt ( i ) ;

}

}

As I cannot find any more tests to put on the test list:

] Initial: Display reads 6 spaces. Safe is locked.
] Enter (key,1,2,3) gives “123 ” as output. Safe is locked.
] Enter (key,1,2,3,4,5,6) gives “OPEN ”, safe unlocked.
] Enter (1,2) gives “ERROR ”. Safe locked.
] Enter (key,1,2,4,3,5,6) gives “CLOSED”. Safe locked.
] Unlocked safe: Enter (lock) gives empty display. Safe locked.
] Accumulate digits in the display when pressing 179.
] Enter codes with digits 0, 4, 5, 6, and 8.
] Safe goes to initial state if lock button entered.
] Safe returns to initial state after 6 digits entered.
] Enter (1,2,key,1,2,3,4,5,6) gives unlocked safe.
] Safe goes to enter code state whenever key button entered.

One left...



30 z TDD of Safe

2.13 Iteration 13: Entered Code Returns to Ini-
tial State

Let us push six digits and test what state the safe is in: enterCodeState or not. The
question is how to test it? There is no accessor method for this boolean. Three pro-
posals come to my mind.

• Modify the Safe interface. Never! Client code has no use for knowing the state of
the safe, it breaks encapsulation, and putting additional methods in the inter-
face just for testing purposes lowers cohesion of the abstraction.

• Adding an accessor method in the SafeImpl class. A bit better but it would mean
casting in the testing code along the lines of assertTrue( ((SafeImpl) safe ). isInEnterCodeState() ).
This would make the testing code fragile as it is more tightly coupled to the con-
crete name of the subclass.

• Use a sideeffect of the state. I can use my knowledge from the stories that if I
enter a digit in the initial/waiting state then the display writes “ERROR” while
it does not do so in the enter code state. Thus I can make a test case that enters
seven digits and test that the display reads “ERROR.”

I choose the last approach. Though the “evidence” is indirect, I do not change any
interfaces but only rely on specifications by the users. The Step 1: Quickly add a test

@Test
public void shouldEnterWai t ingSta teAf terS ixDig i t sEntered ( ) {

/ / F i r s t t e s t wi th a v a l i d c o d e
enterCorrectCode ( ) ;
s a f e . enter ( Button . D9 ) ;
a s s e r t E q u a l s ( "ERROR " , s a f e . readDisplay ( ) ) ;
/ / Next wi th an i n v a l i d one
s a f e . enter ( Button .KEY ) ;
s a f e . enter ( Button . D7 ) ; s a f e . enter ( Button . D6 ) ;
s a f e . enter ( Button . D7 ) ; s a f e . enter ( Button . D6 ) ;
s a f e . enter ( Button . D7 ) ; s a f e . enter ( Button . D6 ) ;
s a f e . enter ( Button . D9 ) ;
a s s e r t E q u a l s ( "ERROR " , s a f e . readDisplay ( ) ) ;

}

This leads to Step 2: Run all tests and see the new one fail

There was 1 failure:
1) shouldEnterWaitingStateAfterValidCodeEntered(TestSafe)
org.junit.ComparisonFailure: expected:<[ERROR] > but was:<[9PEN ] >

OK, I note that I have actually detected two anomalies in the production code. First
the missing behaviour I was hunting—the safe is still in the enter code state. But
second the display is not cleared: the “9” appears concatenated with the “PEN” from
the open safe statement. (This aspect has actually not been expressed by the stories.
As described in Chapter 1 it is envisioned there is some kind of timer that clears the
display after some period of inactivity.)

Step 3: Make a little change is easy as I simply add three lines in the end of the enter
method.



Iteration 13: Entered Code Returns to Initial State z 31

public void enter ( Button button ) {
/ / Handle s t a t e chang ing b u t t o n s
i f ( button == Button .KEY ) { / / KEY

r e s e t ( ) ;
enterCodeState = t rue ;

} e lse i f ( button == Button .LOCK ) { / / LOCK
r e s e t ( ) ;
enterCodeState = f a l s e ;
locked = t rue ;

} e lse { / / DIGIT
Character c = map . get ( button ) ;
i f ( enterCodeState ) {

addCharacterToDisplay ( c ) ;
} e lse {

f l a g E r r o r ( ) ;
}
/ / a f t e r 6 d i g i t s e n t e r e d , go t o wa i t s t a t e
i f ( index == 0 ) {

enterCodeState = f a l s e ;
}

}
}

And Step 4: Run all tests and see them all succeed—all 12 test cases pass.



Chapter

3
Discussion

3.1 Is it complete?

TDD is heavily focused on adding features. So one may question if the derived im-
plementation is sound and complete? To get an answer let us look at a state diagram,
see Figure 3.1, for the machine and do a more classic up-front analysis. As the state
diagram shows, there are basically two states of the safe: “CodeEntering” and “Wait”.
The wait state is what I called the initial state in the TDD presentation. In any given
state the user may hit three types of buttons: key, lock, and digit buttons1. Thus the
diagram is complete: each state has all three types of state changes associated. In the
CodeEntering state there is one additional complication namely that different actions
are required depending on if six digits have been entered or not.

Wait

Digit / ”ERROR”

CodeEntering

Key / count = 0

digit [count < 6] / count++; appendToDisplay(digit)

Digit [count==6, code valid] / unlock; ”OPEN”

Key / count = 0

Lock / lock; ”CLOSED”

Lock / lock; ”CLOSED”

Digit [count == 6, code invalid] / lock

Figure 3.1: State chart (UML) for the safe.

1count is the count of digits in the display, and equal to what I called index in the TDD code

32



Is it complete? z 33

Table 3.1: Transitions
State - Event Test method
Wait - Key shouldDisplay123CodeAsEntered

shouldUnlockSafeOnCorrectCode
shouldAccumulateDigitsInDisplay
shouldKeepLockedForWrongCode
shouldDisplay908CodeAsEntered
shouldOpenSafeAfterError
shouldLockTheSafe
shouldAbortUnlockingWhenLockButtonHit
shouldAlwaysGoToEnterCodeState

Wait - Lock shouldLockTheSafe
Wait - Digit shouldDisplayERRORWhenForGettingKeyButton

shouldOpenSafeAfterError
CodeEntering - Key shouldAlwaysGoToEnterCodeState
CodeEntering - Lock shouldAbortUnlockingWhenLockButtonHit
CodeEntering -
Digit/count < 6 shouldDisplay123CodeAsEntered

(and a lot more)
CodeEntering -
Digit/count = 6, code valid shouldUnlockSafeOnCorrectCode

shouldEnterWaitingStateAfterSixDigitsEntered()
(and a lot more)

CodeEntering -
Digit/count = 6, code invalid shouldKeepLockedForWrongCode

shouldEnterWaitingStateAfterSixDigitsEntered()

Now I can review my test case methods to see if all transitions are covered. As Ta-
ble 3.1 shows, it seems that my TDD process has actually covered all possible transi-
tion within the diagram.



Chapter

4
Small Release Review
How can a small release be tested by the users/customer? I consider writing a small
Java Swing application resembling Figure 1.1 but find I can make an interaktive pro-
totype much faster that is workable though it is a bit more clumsy. It is run from the
shell/prompt and you simply type in digits and either “k” (key symbol) or “l” (lock
symbol) followed by “enter”.

Listing: examples/safe/interaktive/Interaktive.java

import j ava . io . IOException ;

public c l a s s I n t e r a k t i v e {

public s t a t i c void main ( S t r i n g [ ] args ) throws IOException {

Safe s a f e = new SafeImpl ( ) ;

i n t c h a r a c t e r ;
System . out . p r i n t l n ( " Enter d i g i t s 0−9; k=key button ; l =lock button . " ) ;
System . out . p r i n t l n ( " Hit Ctr l−C to stop a p p l i c a t i o n . " ) ;

while ( ( c h a r a c t e r = System . in . read ( ) ) != −1 ) {
char c = ( char ) c h a r a c t e r ;
boolean l e g a l = t rue ;
Button b = null ;
switch ( c ) {
case ’ 0 ’ : b = Button . D0 ; break ;
case ’ 1 ’ : b = Button . D1 ; break ;
case ’ 2 ’ : b = Button . D2 ; break ;
case ’ 3 ’ : b = Button . D3 ; break ;
case ’ 4 ’ : b = Button . D4 ; break ;
case ’ 5 ’ : b = Button . D5 ; break ;
case ’ 6 ’ : b = Button . D6 ; break ;
case ’ 7 ’ : b = Button . D7 ; break ;
case ’ 8 ’ : b = Button . D8 ; break ;
case ’ 9 ’ : b = Button . D9 ; break ;
case ’ l ’ : b = Button .LOCK; break ;
case ’ k ’ : b = Button .KEY; break ;

default : l e g a l = f a l s e ;

34



z 35

}
i f ( l e g a l ) {

s a f e . enter ( b ) ;
System . out . p r i n t l n ( " Display : "+ s a f e . readDisplay ( ) +

" Locked : "+ s a f e . isLocked ( ) ) ;
}

}
}

}

A session using the interaktive prototype may look like this.

Enter digits 0-9; k=key button; l=lock button.
Hit Ctrl-C to stop application.
5
Display: ERROR Locked: true
k
Display: Locked: true
7
Display: 7 Locked: true
6
Display: 76 Locked: true
5
Display: 765 Locked: true
4
Display: 7654 Locked: true
3
Display: 76543 Locked: true
2
Display: CLOSED Locked: true
k
Display: Locked: true
1
Display: 1 Locked: true
2
Display: 12 Locked: true
3
Display: 123 Locked: true
4
Display: 1234 Locked: true
5
Display: 12345 Locked: true
6
Display: OPEN Locked: false
8
Display: ERROR Locked: false
l
Display: Locked: true

First I test the error situation, next an invalid pin code followed by a legal one, to
conclude by locking the safe again.



36 z Small Release Review

In this case, the review passes but I have often experience that when you do TDD you
may overlook some important test cases that only appears at integration testing time
or, as here, when you do some functional/system testing with the end users. If you
run into this (and I bet you will) do not consider it a major flaw of your TDD proces
but rather remember that once a defect is detected that is not covered by your unit
test cases, then start by adding a test case that reproduces the defect before you correct
it in the production code.



Chapter

5
Further Exercises
Exercise 5.1:

Implement Story 5 using TDD.

Exercise 5.2:

Rewrite the implementation to use the STATE pattern to implement the state machine.

37



Appendix

A
All Stories
See also comments in Chapter 1.

Story 1: Unlock Safe The user approaches the safe whose door is locked. The display
is empty, which means it contains 6 spaces/blanks. The user hits the key-symbol
button. The user enters his previously stored pin code by pressing the buttons one
at the time: “1”, “2”, “3”, “4”, “5”, “6”. The display reacts by writing each digit as it
is pressed. After the final “6” button press, the display clears and displays “OPEN ”.
The safe door unlocks and can be opened.

Story 1a: Regret Opening Safe The user starts entering the proper pin code, “1”, “2”,
“3”, but regrets to open the safe. The user hits the lock button, the display clears, and
the safe remains locked.

Story 2: Lock Safe The safe door is unlocked. The display reads “OPEN ”. The
user closes the door and presses the lock button. The door locks. The display reads
“CLOSED”.

Story 3: Forgetting key Button The safe is locked. The user forgets to hit the key
button first and hits “1”. The display reads “ERROR ”. All following button hits
result in the display reading “ERROR ”, unless the key botton is pressed.

Story 4: Wrong Code The safe is locked. The user hits key followed by 1 2 4 3 5 6.
The display is cleared. The safe remains locked.

Story 4a: Completed Pin Code The user enters a 6-digit pin code (valid or invalid).
The safe returns to the initial/waiting state.

Story 5: Set New Code The safe is open/unlocked. The user hits the pin button,
enters a new six digit pin code, “777333”, and finally hits the pin again. The safe’s
display reads “CODE ”. It remains unlocked. After locking, the safe can only be
unlocked (see story 1) by entering the new pin code “777333”.

38


