
Abstract Factory

buildPartA()
buildPartB()

«interface»
Builder

Builder

Adapter

Composite

Decorator

Facade

Proxy

Null Object

Command

Iterator

Observer

State

Strategy

Template Method

Creational

Principles for Flexible Design
① Program to an interface. not an implementation

② Favor object composition over class inheritiance

③ Consider what should be variable in your design (encapsulate the behavior that varies)

Problem: ”The complexity of a subsystem should not be exposed to its clients.”
Example of use: GUI for PayStation

Problem: ”You have a class with desirable functionality but its interface and/or protocol does not 
match that of the client needing it”
Example of use: Lunatown rate calculator integration

buildPartA()
buildPartB()
getResult() : Product

ConcreteBuilder

construct()

DirectorClient

Product

for all objects in structure
{
    builder.buildPartX();
}

create

create

request()

«interface»
Target

request()

Adapter

Client

specificRequest()

Adaptee

adaptee.specificRequest()

operation()

«interface»
Component

operation()

ConcreteComponent

operation()

ConcreteDecoratorA

1

operation()

Decorator

ConcreteDecoratorB

component.operation();

super.operation();
addedBehavior();

Subsystem

«interface»
SomeInterface

SomeClassB

SomeClassA

SomeClassC

SomeClassD

«interface»
FacadeClient

execute()

«interface»
Command

execute()

ConcreteCommand

Invoker

action()

Receiver

Client

receiver.action()

hasNext() : boolean
next() : item

«interface»
Iterator

iterator()

«interface»
Collection

Item

Client

iterator()

ConcreteCollection

ConcreteIterator

*

return new ConcreteIterator()

Problem: ”You want to iterate a collection without worrying about the implementation details of it”
Example of use: Iteration over possible Knight moves in a game of Chess

createProductA()
createProductB()

«interface»
AbstractFactory

createProductA()
createProductB()

ConcreteFactory1ConcreteProductA1

Client

createProductA()
createProductB()

ConcreteFactory2

«interface»
ProductA

ConcreteProductA2

ConcreteProductB1

«interface»
ProductB

ConcreteProductB2

Problem: ”Your products behaviour varies at run-time depending on some internal state.”
Example of use: PayStation AlternatingRate strategy (Context object also implements State). State 
Machines in general.

Problem: ”You want to configure objects with behavior/actions at run-time and/or support undo”
Example of use: Shortcut and action key parameterization in a GUI

Problem: ”You want to add responsibilities and behavior to an object without modifying its class.”
Example of use: Add log file output to Paytation

Problem: ”Families of related objects need to be instantiated. Product variants need to be 
consistently configured.”
Example of use: Simple configuration of HotGammon where each variant has its own factory

Problem: ”You have a single defined construction process but the output format varies”
Example of use: Word processor output formats

request()

«interface»
State

request()

ConcreteStateB

request()

ConcreteStateA

request()

Context

state.request();

algorithmInterface()

«interface»
Strategy

algorithmInterface()

ConcreteStrategyA

algorithmInterface()

ConcreteStrategyA

Context

Client

Problem: ”Your product must support variable algorithms or business rules and you want a flexible 
and reliable way of controlling the variability”
Example of use: PayStation Linear and Progressive rate calculation strategies

operation()

«interface»
Subject

operation()

RealSubject

operation()

Proxy

Client

Problem: ”A resource demanding object negatively affects the resource requirements of the client 
even if the object is not used at all; or new housekeeping when clients access the object is needed.”
Example of use: Allow a word processor to load a document with large number of objects faster

realSubject.operation()

operation()
add()
remove()

«interface»
Component

operation()
add()
remove()

Composite

operation()

Leaf

Client

Problem: ”Handling of tree data structures”
Example of use: Implementing Folder and File classes. Common methods collected in Component.

for each c in components
{
    c.operation();
}

*

operation()

«interface»
Service

operation()

ConcreteService

operation()

NullObject

Client

Problem: ”The absence of an object or behvaior, is often represented by a reference being null. 
However, this leads to numerous checks ensuring that no method is invoked on null.”
Example of use: Disable progress indication during e.g. automatic testing

do nothing

Problem: ”A set of objects needs to be notified if a common object changes state to ensure system-
wide consensus and consistency. You want to ensure this consistency in a loosely coupled way.”
Example of use: Central computer monitoring multiple pay stations on a parking lot

update()

«interface»
Observer

ConcreteObserver

addObserver(Observer)
removeObserver(Observe
r)
setState(newState)
getState()
notifyObservers()

Subject

for all o : observers
{
    o.update();
}

Design Patterns
(according to Flexible, Reliable Software – Using Patterns and Agile Development by Henrik Bærbak Christensen)

hook2()

«interface»
HookInterface2

hook1()

«interface»
HookInterface1

hook1()

ConcreteClass1

hook2()

ConcreteClass2

templateMethod()

Class

templateMethod()
hook1()
hook2()

«abstract» 
AbstractClass

hook1()
hook2()

ConcreteClass

...
hook1()
...
hook2()

...
deleg1.hook1()
...
deleg2.hook2()

deleg2
deleg1

(unification) (seperation)

Problem: ”There is a need to have different behaviors of some steps of an algorithm but the 
structure of the algorithm is otherwise fixed.”
Example of use: Alter parts of the validate coin, add coin, calculate minutes paystation algorithm

Structural

Behavioral

UML
Parameter or local variable
Owns one or more instances
”has a” association specialization

extends interfaces
implements interfaces

Abstract Factory - Provide an interface for creating families of related or dependent objects without 
specifying their concrete classes. Page 217 [FRS]
Builder - Separate the construction of a complex object from its representation allowing the same 
construction process to create various representations. Page 301 [FRS]

Adapter - Convert the interface of a class into another interface clients expect. Adapter lets classes work 
together that could not otherwise because of incompatible interfaces. Page 295 [FRS]
Composite - Compose objects into tree structures to represent part-whole hierarchies. Composite lets 
clients treat individual objects and compositions of objects uniformly. Page 322 [FRS]
Decorator - Attach additional responsibilities to an object dynamically keeping the same interface. 
Decorators provide a flexible alternative to subclassing for extending functionality. Page 289 [FRS]
Facade - Provide a unified interface to a set of interfaces in a subsystem. Facade defines a higher-level 
interface that makes the subsystem easier to use. Page 282 [FRS]
Proxy - Provide a surrogate or placeholder for another object to control access to it. Page 317 [FRS]
Null Object - Avoid null references by providing a default object. Page 325 [FRS]

Command - Encapsulate a request as an object, thereby letting you parameterize clients with different 
requests, queue or log requests, and support undoable operations. Page 308 [FRS]
Iterator - Provide a way to access the elements of an aggregate object sequentially without exposing its 
underlying representation. Page 312 [FRS]
Observer - Define a one-to-many dependency between objects where a state change in one object results 
with all its dependents being notified and updated automatically. Page 335 [FRS]
State - Allow an object to alter its behavior when its internal state changes. The object will appear to 
change its class. Page 185 [FRS]
Strategy - Define a family of algorithms, encapsulate each one, and make them interchangeable. Strategy 
lets the algorithm vary independently from clients that use it. Page 130 [FRS]
Template Method - Define the skeleton of an algorithm in an operation, deferring some steps to subclasses. 
Template Method lets subclasses redefine certain steps of an algorithm without changing the algorithm's 
structure. Page 366 [FRS]


