
i
i

“book” — 2011/9/2 — 14:53 — page 497 — #525 i
i

i
i

i
i

The TDD Rhythm

The TDD Rhythm:

1. Quickly add a test

2. Run all tests and see the new one fail

3. Make a little change

4. Run all tests and see them all succeed

5. Refactor to remove duplication

Essential TDD Principles

TDD Principle: Test First
When should you write your tests? Before you write the code that is to be tested.

TDD Principle: Test List
What should you test? Before you begin, write a list of all the tests you know you
will have to write. Add to it as you find new potential tests.

TDD Principle: One Step Test
Which test should you pick next from the test list? Pick a test that will teach you
something and that you are confident you can implement.

TDD Principle: Isolated Test
How should the running of tests affect one another? Not at all.

TDD Principle: Evident Tests
How do we avoid writing defective tests? By keeping the testing code evident,
readable, and as simple as possible.

TDD Principle: Fake It (’Til You Make It)
What is your first implementation once you have a broken test? Return a constant.
Once you have your tests running, gradually transform it.

TDD Principle: Triangulation
How do you most conservatively drive abstraction with tests? Abstract only when
you have two or more examples.

TDD Principle: Assert First
When should you write the asserts? Try writing them first.



i
i

“book” — 2011/9/2 — 14:53 — page 498 — #526 i
i

i
i

i
i

TDD Principle: Break
What do you do when you feel tired or stuck? Take a break.

TDD Principle: Evident Data
How do you represent the intent of the data? Include expected and actual results
in the test itself, and make their relationship apparent. You are writing tests for the
reader, not just for the computer.

TDD Principle: Obvious Implementation
How do you implement simple operations? Just implement them.

TDD Principle: Representative Data
What data do you use for your tests? Select a small set of data where each element
represents a conceptual aspect or a special computational processing.

TDD Principle: Automated Test
How do you test your software? Write an automated test.

TDD Principle: Test Data
What data do you use for test-first tests? Use data that makes the tests easy to read
and follow. If there is a difference in the data, then it should be meaningful. If there
isn’t a conceptual difference between 1 and 2, use 1.

TDD Principle: Child Test
How do you get a test case running that turns out to be too big? Write a smaller test
case that represents the broken part of the bigger test case. Get the smaller test case
running. Reintroduce the larger test case.

TDD Principle: Do Over
What do you do when you are feeling lost? Throw away the code and start over.

TDD Principle: Regression Test
What’s the first thing you do when a defect is reported? Write the smallest possible
test that fails and that, once run, will be repaired.


